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Theory of 'self-similarity' of periodic approximants to a 
quasilattice: 111. The case of a non-Bravais-type quasilattice 

Komajiro Niizeki 
Department of Physics, Tohoku University, Sendai 980, Japan 

Received 9 March 1992 

Abstnct. The mother lattice L of a non-Bravais-type quasilattice (NBTQL) is a non-bavair- 
type periodic lattice with higher dimensionality and has an-associated Bravais lattice Lo. 
The main problems on periodic approximants (PAS) to the NBTQL are reduced to similar 
problems in the ease of the relevant Bravais-type quasilattice derived from Lo and the 
previous theories on the space groups and 'self-similarity' of the PAS apply to the NBTQL. 
The present theory includes a general prescription of obtaining PAS to a NBTQL. We apply 
the theory to several NBTQLS with an octagonal, decagonal or dodecagonal point symmetry. 
The second important Btavais lattice L, called the host lattice is associated with L and 
we have clarified the difference in roles between Lo and L, in thetheory O f  PAntO the NBTQL. 

1. Introduction 

Periodic approximants (PAS) to a quasilattice (QL) are of current interest in connection 
with approximant crystals to a quasicrystal (Spaepen et al 1990, Zhang and Kuo 1990, 
Edagawa et a/ 1991). We have investigated the space groups and 'self-similarity' of 
PAS to the octagonal, decagonal and dodecagonal QLS in two dimensions (ZD) and the 
icosahedral one in 3~ (Niizeki 1991b, c, 1992b). 

A QL in d-dimensions with d = 2 or 3 is obtained by the cut-and-projection method 
from a periodic lattice L in 2d-dimensions (see, for example, Janssen 1988). L is a 
Bravais lattice or not, dependent on whether the number of lattice points in a unit cell 
of L is one or more, respectively. Correspondingly, the QL is classified into Bravais-type 
or non-Bravais-type (NB-type) (Niizeki 1989a). Only the case of Bravais-type ~b has 
been considered in our investigations on PAS (Niizeki 1991b, c, 1992a, b). However, 
there exist several important Q L ~  of NB-type (Niizeki l988,1989a, b). The most important 
of them is the decagonal QL associated with the Penrose tiling with rhombic tiles (de 
Bruijn 1981). The second important one is a dodecagonal QL associated with a 
quasiperiodic tiling with squares, regular hexagons and 30"-rhombi (Niizeki 1988, 
Socolar 1989). More importantly, the QL associated with a real quasicrystal is usually 

In this paper, we shall extend our previous theories of PAS to the case of NB-type 
Q L ~ .  We shall confine our considerations to the ZD QLS with the octagonal, decagonal 
or dodecagonal point symmetry because the present theory is easily extended to the 
case of the 3~ icosahedral Q L ~ .  Our theory will include a general prescription for 
constructing PAS to an NB-type QL. 

The translational symmetry of the mother lattice L of an Ns-type QL iS represented 
by its Bravais lattice Lo, and a Bravais-type QL obtained from Lo is naturally associated 

O f  NB-type. 
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with the QL. Another important Bravais lattice associated with L is the host lattice, 
Lh, which is defined as a minimal Bravais lattice among those which include L as their 
sublattices. We will clarify the difference in roles between the Lo and Lh in the theory 
of PAS to the Ns-type QL. 

We investigate in section 2 general properties of the mother lattices of Ns-type 
n-gonal QLS with n = 8, 10 or 12 and in section 3 those of the QLS themselves. The 
contents of these sections are summaries of the papers of the present author (Niizeki 
1989a, c) and we will omit, in these sections, references to these papers. We extend, 
in section 4, the previous theories (Niizeki 1991b,c) of PAS to the case of a Ns-type 
QL and show that the main problems on PAS to the QL are reduced to  similar problems 
in the case of a Bravais-type QL associated with the QL. The results of Niizeki (1991b, c) 
are used in this section without refemng to these papers. We apply in section 5 the 
theory of the present paper to a representative NE-type n-gonal QL for each case n = 8, 
I U  or i2. ine contents 01 sections 2-4 wiii be easier io understand if they are read in 
parallel to this section. In section 6 we summarize the results of this paper and discuss 
several related subjects. 

.n.. m.. 

2. The mother lattice of an ~n- tppe  quasilattice 

We assume that the point symmetry of the NE-type QL is Smm, 10" or 12mm. The 
mother lattice L of the QL is an NB-type lattice in 4~ and embedded in E4, the 4~ 

Euclidean space. The point group G of L is equal (exactly, isomorphic) to nmm with 
n = 8 ,  10 or 12 and its order, IGI, is equal to 2n. G is generated by r, a 4~ rotation 
with order n, and s, a 4~ mirror. r satisfies r" = 1 or, more precisely, P.( r )  = 0 with 
P,(x)  being the n-cyclotomic polynomial, which is given by 1 + x4, 1 -x+  x2 - x3 + x4 
or l-x2+x4 for n =8, 10 or 12, respectively. Note that r"'2=-1, which is nothing 
but the 4~ inversion. 

We assume that the space group of L is pnmm with n = 8,lO or 12, i.e. symmorphic. 
Then, L has special points (SPS) with the full point symmetry (nmm)  (a point in E4 is 
called an SP of L if its point group with respect to L is a centring point group). There 
exists only a single Bravais class of the 4~ n-gonal lattice for each n (Janssen 1988). 
Let Lo be the Bravais lattice representing the translational symmetry of L. Then the 
space group of L is given by g = G * Lo, the semi-direct product of G and Lo, provided 
that the origin of the Cartesian coordinate system for E4 is chosen appropriately; the 
lattice points of Lo are full symmetry points of L. The space goup of Lo is identical 
to that of L, so that the sps are common between L and Lo. The sps of Lo are rational 
points with respect to Lo. As will be shown later, all the lattice points of L are SPS of 
Lo for important NB-type QLS. 

Let U be the number of the lattice points of L in a unit cell of Lo. Then Lis  divided 
into Y sublattices 

(1) L =  L ,  UL2U.  . . UL, 

with 

L , = x , + L o  (2) 

where xi is a representative of the lattice vectors in L, and determined in modulo LO. 



I Self-similarity of a non-Bmuais-type quasilattice 4561 

We shall confine our arguments to the case where x, are all rational points with respect 
to Lo. Then xj together with Lo generate a Bravais lattice L,, which we shall call the 
host lattice of L. L, is, in fact, a minimal Bravais lattice among those which include 
both L and Lo. 

Lo is a superlattice of L,. The multiplicity m of Lo with respect to L, is defined 
to be the number of the lattice points of L, in a unit cell of L,: m = I Lh/ LoI, the order 
of the factor group L I L O .  Note that m 2  U. The space group g, (=G * Lh) of Lh is 
isomorphic to g (=pnmm) but g ,  3 g. 

An n-gonal lattice has two types, A and L, of mirrors (Niizeki 1991a). There can 
be two cases with respect to the relative orientation between L, and Lo. In the normal 
case, the mirrors of G are of common types between the two lattices but in the inverted 
case, a type A (or L) mirror of L, is of type P (or A) as a mirror of 4. 

Let A E { 1,2, . . . , v }  be the set of the suffices of x,. Then, for given U E G and i E A 
there exists j E A such that u x ,  3 .q mod io or, equivaientiy, ui, = 4. Tnis gives rise io 
a permutational representation of G and we can assume that -G acts on A as ui = j. 
The symmetry of x, (or any lattice point of Li)  with respect to Lo is given by the 
isotropy group of i :  Hi = { U ~ U E  G, ui = i}. If ui # i, then Hi and H, with j = ui are 
different but conjugate in G, so that x, and xj are equivalent but differ only in their 
'orientations'. Then, Li and Lj are equivalent in L. That is, equivalent sublattices in 

with point group H is equal to lGl/lHl. L is called homopolar if all the Y sublattices 
of L are equivalent but heteropolar otherwise. If L is homopolar, U represents the 
number of different 'orientations' of the lattice points of L. On the other hand, if L is 
heteropolar, it can be divided into several homopolar components, each of which 
represents a set of equivalent lattice points. 

E4 is decomposed by G into two invariant ZD subspaces E ,  and E : .  The two 
subspaces have irrational orientations with respect to L, Lo and L,.  The point group 
G acts not only onto E4 but also onto E, and E : .  We shall call E2 the physical space 
and E ;  the internal one. 

Let E , ,  i = 1-4, be the basis vectors of L, and P (or P') the projectors onto E2 (or 
E;). Then e, = Psi (or ej = P'E,) ,  i = 1-4, are linearly independent over Z. We can 
assume that e. (or e:) are four of the vertex vectors of a regular n-gon centred on the 
origin of E2 (or E ; ) ,  We shall call it the unit n-gon. a = le,l is called the lattice constant 
of L,,. A mirror of L, is of type A or L dependent on whether it passes a vertex of the 
unit n-gon or the middle point of its edge. 

The set of points, PL, = (L,nsejlnj E Z}, is dense in E, and is called a pre-qnasilattice. 
The same is true for P'L,. If a rational point of E4 with respect to th is projected 
onto E, (or E ; ) ,  the resulting vector is written as a linear combination of e, (or el) 
with rational coefficients and is called a rational point with respect to PLh (or P'L,). 

Let 6,, i =  1-4, be the basis vectors of Lo. Then, they are related to E ,  by a 
non-singular integer matrix M 

I t \  "--..--..*..A I.... I..%̂"&:̂.. ^C^^ e,o...~....-cP. TI.- .̂._ I.~-̂ F~̂ ..:..̂ l~̂ r"..I.lnt*:̂ ~" ( ' 1  LLlG p'r,,rrurru U J  L I I r  acllull U1 a,, CIC.LICLII U ,  ". n llrj l l Y I l l V G L  U,  cqU1"a'c"L D Y u L a L L l c r D  

(61626364) = ( E I E , E , E I ) M .  (3) 

Note that m = Idet(M)I. M-' is not an integer matrix and we denote byfthe smallest 
positive number such that fM-' I s  an integer matrix. j(>l) is a divisor of m. 

The two basis sets ( E ~ }  and (6,} give rise to two indexing schemes for a 4~ vector 
in E,; the two indices are related by M. The indexing scheme with 6, or E !  will be 
referred to as the canonical scheme or the h-scheme, respectively. All the lattice vectors 
of L, are indexed by integers in the h-scheme but this is not the case in the canonical 
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scheme; the indices of ei in the canonical scheme are given by the ith column of 
M - ’ .  This is the reason why the h-scheme is used frequently in the argument on an 

We can consider M to be a matrix representing a linear transformation p 
satisfying 6i =Pei, i = 1-4. It follows that Lo = BLh. It can be shown generally 
that p = bo+ b,r+b,r2+b,r3 with bi being integers or, equivalently, M =  
box+ b,R + b,R’+ b,R’, where R is a unimodular matrix defined by the equation 

NB-type QL. 

~ ( W ~ E ~ E J  = ( E ~ E ~ E A R .  (4) 

Note that R satisfies R” = I  and P. (R)  =O. p decomposes as p =SOS’, where S and 
S’are similarity transformations acting onto E, and E;, respectively. We may say that 
Lo and L, are similar because the scale of E ;  is indifferent to the projection method. 

In the normal case, P6( is parallel to e, ( = P E ; ) ;  P6, = Ae,, where A E Z [ 2  cos(2?r/n)] 
is a quadratic algebraic integer. We may write p = AIQA’I with A’ being the algebraic 
conjugate of A. Note that m = (AA’)’ because det(M)=det(p).  

L, and Lo have a common special automorphism a which is written as a =  
ao+a , r+a2rZ+a3r3  with ai being integers. a acts as a similarity transformation onto 
E2 and E ; .  We can assume that a expands E2 and shrinks E ; .  In the case of n = 8 
(or lo), a takes a special form a = TIQT’I,  where T =  l+& (or ~ = ( 1 + & ) / 2 )  and 
r’ ( = - l / ~ )  being the algebraic conjugate of T. T is an irrational number characterizing 
the irrational orientation of E’. The integer matrix N representing (I is uni-modular 
and written as N = a o l + a , R +  a,?+ a,R3. 

a is not necessarily an automorphism of L but there exists a finite integer k such 
that a‘ is an automorphism of L. We shall develop our theory by assuming that a is 
an automorphism of L; a is redefined, if necessary, to be a*. Then a permutes the 
sublattices Li of L and a acts on A as a permutation. If L is heteropolar, a may 
permute its homopolar components. 

3. Properties of an NE-type n-gonal QI 

An Ne-type QL is obtained by the projection method from L as 

Q ( q {  W(i)))= U i ( P ( l + x ) l l ~  Li, P ’ ( ~ + x ) E  W(i)} ( 6 )  

where x is a 4~ phase vector and W(i) (cE;) the window assigned to the sublattice 
L,. W(i) are usually polygonal domains and their vertices are rational points in E :  
with respect to P L , ,  which we shall assume hereafter. The QL is divided naturally 
into Y sublattices. It is homopolar or heteropolar depending on the nature of L. If 
heteropolar, it is composed of several homopolar QLS. 

The windows must satisfy uW(i )  = W(ui) for all U E  G. Then, W(i) have the point 
symmetry Hi. In particular, W(i) has the inversion symmetry, W(i)= - W(i), if Hi is 
centrosymmetric. On the other hand, if Li and Lj are equivalent, then j = ui for U E G, 
so that uW(i) = W(j); W(i) and W(j)  are congruent but different in their orientations. 
If Hi is non-centosymmetric, there exists j E A such that Li = -Lj (or, equivalently, 
x, 

The macroscopic point symmetry of Q(x) = Q(x, { W( i)}) is equal to G owing to 
our choice of the windows. Q L ~  with common windows but different phase vectors 
form a single local isomorphism class. 

-xj mod Lo) and we obtain W(j) = - W(i). 
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Qo(x, WO), is obtained by the projection method 
from Lo, where WO is a window with point symmetry G. If L is a homopolar lattice 
formed of a class of SPS of Lo, then a lattice point of Q(x) is a local centre of symmetry 
of Q&); the point group of the local symmetry is equal to that of the class of SPS. 
Therefore, Q(x) is formed of ‘special points’ of Qo(x). Q(x) is divided into Y sublattices 
corresponding to Y different orientations of the local symmetry. If Q(x) is heteropolar, 
a similar argument applies to each of its homopolar component. It is essential in the 
present argument that the phase vector x is common between Q(x) and Qo(x). 

Since a shrinks E : ,  a W ( i )  is smaller than W ( i ) .  We assume that n W ( i ) c  W ( a i )  
for all i E A ;  if this is not satisfied, we must replace a by some power of a. Let 
w ( i ) = a - ’ W ( a i )  and ~ ( x ) = Q ( x , ( W ( i ) } ) . T h e n  Q ( x ) s  Q(x) because W ( i ) s  w(i). 
We can prove by a similar argument as in Niizeki (1991~) that e ( x )  = a-’Q(ax), 
which is similar to Q ( a x ) .  Therefore, Q(x) is self-similar; o(x)  is a deflation of Q(x) 
and Q ( a x )  ( = a o ( x ) )  is a deflation-and rescaling of Q(x). 

A Bravais-type n-gonal QL, Qdx) 

4. Periodic approximants to an ~n-type n-gooal QL 

ZD lattice planes of Lo are important in the theory of PAS. Let II be one of them. Then 
it is indexed in the canonical scheme by a 2 x 4 integer matrix K. We may assume that 
K is irreducible (for reducibility or irreducibility of an integer matrix, see Niizeki 
1991~). Then the two columns of K index the two basis vectors of the ZD lattice II n Lo. 
The index of II in the h-scheme is given by K’= MK. On the other hand, li = aII is 
another ZD lattice plane, which is indexed by NK and its slope with respect to E2 is 
smaller than that of II. 

Since Lo is a superlattice of Lh , II is also a ZD lattice plane of L, . The ZD lattice 
II n Lo is a superlattice of II n L, but the two lattices coincide if K‘ is irreducjble. 

A PA to a QL whose mother lattice is L i s  obtained from a deformed lattice L which 
is obtained from L by introducing a phason strain; a ZD lattice plane II of L becomes 
coincident with E, by the deformation. L and the PA are characterized by the index 
K of II. A good PA is obtained when the angle between II and E, is small. Then the 
integers in the index K are related to rational approximants to an irrational of 
the form p = T - k with k being an integer smaller than T - 1; p coincides with T 

in the case k = 0. A series of rational approximants to p is obtained from a sequence 
of the Fibonacci numbers and/or their analogues, which are generated by a recursion 
relation. p may have several series of ‘best’ rational approximants (Niizeki 1992b). 

In the case of an n-gonal QL, PA with two mirrors perpendicular to each other is 
important (Niizeki 1991b, c, 1992b). The relevant lattice plane II to the PA is character- 
ized by a pair of rational approximants to p as ( p / q ,  u / u ) ,  where p / q  (or u / u )  is 
associated with the first (or second) mirror of II; the first (or second) column of K is 
written with p and q (or U and U ) .  The unit cell of the PA is rectangular or rhombic 
for K irreducible or reducible, respectively. We shall designate a PA with space group 
X as XCplq,  u l v ) ,  for example, p g m ( 8 / 5 , 5 / 3 ) .  

II is a lattice plane of Lh as well and indexed in the h-scheme by K’= MK, which 
is, however, not necessarily irreducible. A different pair ( p ’ / q ’ ,  u’ /u’ )  is associated with 
K’; p‘ and q’ (or U’ and U’)  in K’ are related by a 2 x 2 integer matrix to p and q (or 
U and U )  in the normal case but to U and U (or p and q )  in the inverted case. The 
relation in the normal case is rewritten, alternatively, to the form p ’ ~ + q ’ =  h ( p ~ + q )  
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or a similar form with p. It may happen that p' and q' (or U' and U') have a non-trivial 
common divisor. Then p ' f  q' (or u ' / u ' )  is not a simple fraction and K '  is reducible. 

We may write the deformed lattice as L = @L, where @ is the linear transformation 
representing the phason strain; @II = E 2 .  io= @Lo is a Bravais lattice of i and ih = @kh 
the host lattice of L. E2 is a 2D lattice plane of both io and ih, so that io,,- E2 p Lo 
and f h , B =  E 2 n  i,, are 2D Bravais lattices. It is usual that io,, is a superlattice of Lh,,; 
the two ZD lattices coincide only when K '  is irreducible. The shadow lattice of io (or 
i h )  is defined by io,p P ' i o  (or !h,s=-Pih), which is a?D Bravais lattice in E;. We 
can prove that m = lLh,B/io.Bl x ILhJ Therefore, if Lh.B = io,,, for example, then 

The point group G of L is degraded by @ to its subgroup 6, which is the point 
group of i, io and ih. The space group is common between i and io and given by 
&=G* Lo. 

is given as 

(6 )  
where P(i) are appropriate deformations of W ( i )  and <=ax. A PA Go(<) to Qo(x) 
is obtained similarly from io. 

Two PAS &<) and &<) are related locally to each other, so that the space group 
is common betweenthem. Therefore the Bravais lattice of &<) is given by &,, and 
t,he space group of Q(<) is determined by the symmetry of P'<( E E ; )  with respect to 
Lo,, (Niizeki 1991b). Note that the role of io,B or io,, in these arguments can be 
replaced by io,, or i,, only when the former coincide with the latter. 

In the case of a high-symmetry PA, it may occur as a singular case that lattice points 
of i project onto the boundaries of the windows. This causes the PA to have local 
structures which are not allowed in the ideal QL. 

There exists a one-to-one correspondence between PAS to Q(x) and those of Qo(x). 
Therefore, we can conclude that a classification of the space groups of the PAS to an 
NB-type n-gonal QL is completely reduced to a similar problem in the case of the 
relevant Bravais-type QL; the latter problem has been solved in the series of papers by 
Niizeki (1991b,c, 1992b). Moreover, we can show as in Niizeki (1991~) that the PAS 

to Q(x) are grouped into different series in such a way that each series is generated 
from its prototype member by successive applications of the deflation-and-rescaling. 
The space group is common among the members of a single series. The procedure of 
obtaining the deflation or inflation of a given PA to the Ne-type QL is Similar to the 
one given in Niizeki (1991c, 1992b) for the case of the Bravais-type QL. The procedure 
is unique only when P ' x  as well as the vertices of W, are rational points in E;. 

lih,s/i0,81 = m. 

- -  
i i. A ~ ~ ~ ~ ~ ~ . ~ A  intn r..hl.,+t:m. i - z + i x x r i t h  .z -A.. m.n.ac,.m I n. e,. A/-\ 
Y 11 Y'-"'.'p""..Y L.I%" i l Y " L U L L L I l Y  Y i  -*, "0  W1L.1 *j - .+-Ai. ' I IL . . \ .L"LC,  P r,, L" y\*,  

&i,{tV(i)})= u , { P ( I + < ) ~ ~ E  i,, P ' ( I + < ) E  +( i ) l  

5. Several examples 

We shall investigate an octagonal QL, a decagonal one and a dodecagonal one, 
separately. Some of the properties of the NB-type 4~ n-gonal lattices in this section 
have been investigated in Niizeki (1989a. c) and reference should be made to these 
articles. 

5.1. The case of an octagonal QL 

The 4~ space group p8mm has only one class of sps with point symmetry 4". The 
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SPS can assume two different orientations and form a homopolar NB-type octagonal 
lattice L with two equivalent sublattices. We shall consider an octagonal QL derived 
from L. Then we obtain Y =2, m =4, f =2, p = r+r- '  and a = l+p. Lo and L, have 
anormalrelationwithA=~.ThebasisvectorsofL,issochosenthatr(E,, E ~ ,  E , , E * ) =  

( E ~ ,  E, ,  E ~ .  - E J  and s ( E ~ ,  E * ,  e,, EJ = (e4, E ; ,  E ~ ,  E ~ ) .  The first of the two equations 
determines R and M 3 R + R-' is obtained as given in the appendix. Note that M 2  = 21 
and M-'= M j 2 .  It follows that Lo = {Xcniejlnj E Z, n, = n3 and n2= n4 mod 21, xI = E~ 

andx,=e2. Moreover, we obtain L,=LoUL,UL2LIL, with L , - E , + E ~ + L ~ ,  whichis 
formed of SR with full symmetry of Lo. Lj are invariant against a. 

Lo and L3 form an octagonal black-and-white Bravais lattice (Niizeki 1990b) and 
Lo3= LoUL, is another octagonal lattice of the Bravais-type. L is a simple translation 
of this lattice; L = E~ + Lo,. Note, however, that L is considered to be of the NB-type 
because the point symmetry of its lattice points is assumed to be 4mm but not 8". 

Let W(1) (or W ( 2 ) )  be a square window whose vertices are at *e; and *e; (or 
*el and *e;). Then L together with these windows yields~an NB-type octagonal QL, 
Q(x), as shown in figure 1. An inflation (or deflation) of Q(x) is obtained by shrinking 
(or expanding) the windows W ( i )  as T-' W ( i )  (or TW(i) ) .  The inflated QL is superim- 
posed in figure 1. The bond length of the QL is equal to le, + e2I = 2a cos( rr/l7). 

F i y m  1. An NB-type octagonal quasilattice (solid lines) and a part of its inflation (dashed 
lines). The lattice paints are given by the positions of the vertices of the octagonal 
quasiperiodic tiling composed of five kinds of tiles, one of which is a wncave octagon. 
The QL is composed of two sublattices and two vertices connected by a bond belong to 
different sublaniccs. Each kind of tile in dashed lines has its own decoration but a rhombic 
tile and a hexagonal tile have polarities. 

The Bravais-type octagonal QL, Qo(x, WO), obtained from Lo is the set of vertices 
of the h m a n n  tiling shown in figure 2, where WO is chosen to be a regular octagon 
whose vertices are at r' (e;+e;) ,  i = 0-7. Q(x) and Qo(x) interpenetrate each other and 
the set of all the centres of square tiles of the Ammann tiling is exactly equal to Q(x). 
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Figure 2. The octagonal Amman” tiling (solid lines) 
associated with the ~ s - t y p e  octagonal QL (dashed 
lines). The Ns-type QL coincides with the set of all 
the centres of square tiles of the h m a n n  tiling. 
Conversely, the latter tiling is obtained from the 
former by appropriate decorations of the tiles pro- 
vided that an appropriate ‘polarity’ is introduced 
into each square tile of the ~ s - t y p e  QL. 

Figure 3. A square PA (solid lines) to an ~ ~ - t y p c  
octagonal QL and its inflation (dashed lines). The 
original PA is desinad by p4g(l2/5,12/5), and the 
inflated PA by p4g(5/2,5/2). The space group is 
wmmon between the two PAS. The unit e l l  is a 
square whose corners are shown by circles. The cor. 
ners of the cell and its centre are tho centres of the 
four-fold symmetry. 

The bond length of Qo(x) is equal to &a. The double inflation (T2-scaling) of Qo(x) 
is the third octagonai QL, which is composed of the eight-pronged vertices of the 
Ammann tiling; the third QL is identical to the set of centres of the octagonal tiles of 
Qk). 

Let us investigate square P& to the octagonal QL. The relevant deformed lattice is 
characterized by a fraction p/q approximating c ( = I  +a) and indexed by K = 
[qppq/pqqp]. where the first (or last) four integers in K show the first (or second) 
coiumn of n” (iu’iizeki i99ic). p and q musi have opposite panties in order that K is 
irreducib1e.p’andq’in K ‘ ( = M K )  aredeterminedbytheequationp’~+q’=a(p~+q), 
which yields p’ = p + q and q’ = p - q. It follows that p’ + 9’ is even and K’ is reducible. 
i,, is a square lattice which is the centred version of Lo.B. The shadow lattice, Lo,., 
is also a square lattice. If P ’ i  is located on the centre of a square unit cell of io,,, the 
space group of &i) is p4g (Niizeki 1991~). 

PA is designated by p4g(5/2,5/2). The original PA and its inflation are related locally 
in a way similar to that of the relevant ~ ~ a n d  its inflation. 

We show in figure 4 two PAS, Q(i) and Qo(i), which are designated byp4g(5/2,5/2). 
&i) is identical to the set of the centre of all the square tiles in do($). The two PAS 
are related locally in a way similar to that of the relevant QLS. 

,,r- _L :.. c .L. -. - ” - , . m , c  . l),r\ ..-.. L -.... :.L :.. ..o-..-~. -~.  :_1 - .__1  
w e  siiuw 111 i tpure  3 tnc YA p*g\uI 2, 1‘1 J/ iupeincr wiin 116 innanon.  ne inilaieu 

5.2. The case of a decagonal QL 

The 4~ space group plOmm has two classes of sps with point symmetry Sm, which is 
non-centrosymmetric. The spS form a heteropolar NB-type decagonal lattice with tWO 
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Figure 4. A square PA (dashed lines) to an NB-type 
octagonal QL and that to a Bravais-type (solid lines). 
The two PAS are designated by p4g(5/2,5/2). They 
are related locally to each other in a similar way to 
ihai oiiheir originais (see iigure Zj. iine iaiiice painis 
afthe PA with dashed lines are located on the centres 
of square tiles of the other PA. 

Figure 5. Two decagonal QLS associated with the 
Penrase tiling with rhombic tiles and the one with 
pentagonal tiles. The vertices of the rhombic (or 
pentagonal) Penrose tiling form an NE-type (or 
Bravais-iypej decagonai QL. iine NB-iype QL is com- 
posed of two homopolar components, one of which 
is the set of centres of the pentagonal tiles in the 
second Penrose tiling. Conversely, the lattice points 
of the Bravais-type QL are located on Special posi- 
tions of the fat rhombi ofthe rhombic Penrose tiling; 
the special positions are determined by the well 
known polarities of the fat rhombi. 

homopolar components. We will consider this lattice and denote it L. Then we obtain 
Y = 4, m = 5, f = 5, 6 = r - r-I and a = r+ I-'. The orientations are inverted between 
L, and Lo. It is convenient to take for Lh (or Lo) a symmetrical but overcomplete 
pet (Niizeki 1990a) of hasis vectors i = 0-4, with Lioi = O  (or 6: with Lisi = 0): 
E~ satisfy r 2 ( ~ 0 , ~ l , ~ z , 8 ~ , ~ 4 ) = ( ~ I . ~ ~ . ~ J , ~ 4 , ~ o )  and S ( E O I E I , & Z ~ E ~ , E I ) =  

= E ( .  

Lo is written with E~ as Lo = (PiniEilni E 2, Lint = 0} and we obtain xi = i E l ,  i = 1-4. Note 
that x, E -x2 and x.,= -xI mod Lo and also that Lh = UL. The matrix M is given in 
the appendix. The two homopolar components of L are L"'= L, UL,and Liz'= L,UL,. 
r interchanges the two sublattices of L'" and also those of L'", while a interchanges 
L"' and Li2). More precisely, a permutes ( L l ,  L2, L,, L4) as (L3, L,, L,, L2). The 
permutations r and II satisfy r =  a' and r 2 =  ad= E with E being the identity permu- 
tation. 

The vertices of the rhombic Penrose tiling as shown in figure 5 form an NE-type 
decagonal QL, Q ( x ) ,  which is obtained with the projection method from L by assuming 
appropriate pentagonal windows for W ( i )  (de Bruijn 1981, Janssen 1988, Niizeki 
1989a). We shall call Q ( x )  a Penrose QL. It is composed of two homopolar components 
Q"' and Q'" which are derived from the two sublattices L"' and LC2' of L. Q"' and 
Qc2) are similar; the former is r-times the latter (Niizeki 1989a). Let D be a regular 
decagon whose vertices are at *P'Sj ,  i = 0-4. Then the Bravais-type decagonal QL, 
Qo(x, D), obtained from Lo by using D as the window yields the pentagonal Penrose 

E * ,  E , ,  E ~ ,  E , ) .  Si is related to E !  by Si = E ~ + ~ - E ; - ~  with the convention 
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tiling as shown in figure 5.  The set of all the centres of the pentagonal tiles in Q0(x) 
is identical to Q”’ as shown in the same figure. The bond length of Q(x) (or Q0(x)) 
is equal to a (or 2a s i n ( ~ / 5 ) ) ,  

The deformed lattice associated with PAS with two mirrors is characterized by the 
index K = [pqOOq/Ouuiki] with p /  q and U /  U being rational approximants to the golden 
ratio 7 ( =  (1+&) /2 ) ;  K is written as [ij7j%/uu~~l with f = p - q  in the asymmetrical 
index scheme used in Niizeki (1991b). The first or second column of K refers to the 
A or X direction of io, respectively. The relevant integers p’. 4’. u’and u’in K’ (=MK) 
are given by p ’ = u + 2 u ,  q ’ = 2 u - u ,  U’=¶ and u ’ = p - q ,  which satisfy p ’ ~ + q ’ =  
&( UT + U) and U’T + U’ = T- ’ (  pT + 9). 

io., is a rhombic lattice if the conditions, p = U and f = U mod 2, are satisfies but 
is a rectangular one otherwise. i,, belongs to the same Bravais class as that of io,B. 

Fibonacci numbers, Fk, yield best approximants to T and the Lucas numbers, Lk 
(= Fk-] + Fk+,),  second best ones. We shall confine our arguments to these two types 
of approximants. Then the type is common between p / q  and u’ /u’  ( = q / ( p - q ) )  but 
it is opposite between u / u  and p’ /$ .  We obtain Lh,, if u / u =  Fk+,/Fk. On the 
other hand, io,, is a superlattice of Lh,, if u / v  = Lk+,/ Lk because we obtain p ’ =  5Fk+, 
and q’=5Fk.  The unit cell of Lo.e in this case is five times that of i,,,. 

We show in figure 6 a rectangular PA to the Penrose QL. The PA is designated by 
pgm(8/5 ,5 /3) .  

Flgure 6. A rectangular PA, pgm(8/5,5/3) ,  to the 
Penrose QL. The rectangle with dot-dashed lines is 
the unit cell. The horizontal mirrors and vettical 
glides are shown by lines and arrows, respectively. 
There exist two kinds of hexagonal defects because 
the singular case has happened; the centres of the 
hexagons are the centres of the inversion symmetry. 
An acute (or obtuse) hexagon will be divided into 
two skinny (or fat) rhombi and one fat (or skinny) 
rhombus if the phase vector is shifted infinitesimally 
along the horizontal anis or the vertical one in the 
internal space, However, the vertical glides or the 
arirontal mirrors will be lost then, respectively. 

Flgvre 7. A square PA, p4g(3/2,3/2), to the NB-type 
dodecagonal QL. The comers and the centre of the 
square unit cell are the centres of the four-fold 
symmetry. 
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5.3. 7he case of a dodecagonal QL 

The 4~ space group pl2mm has two classes of spS with point symmetry 3m, which is 
non-centrosymmetric. We consider here a homopolar Ne-type dodecagonal lattice 
derived from one of the two classes. Then we obtain U = 4, m = 9, f=  3 and p = r +  I - ‘ .  

Lo and Lh have a normal relation with A =8. The basis vectors of L, is so chosen 
that r ( & , , & ~ , & 3 , & 4 ) = ( & 2 , & ~ , & ~ , & , - & ~ )  and ~ ( ~ I , ~ 2 r ~ , , ~ 4 ) = ( ~ 4 . ~ , , ~ 2 r ~ l ) .  The 
matrix M is given in Appendix. Note that M 2  = 31 and M-’ = M / 3 .  We may write 
Lo={&n,e,In, E Z, n ,  n,  and n 2 -  n4 mod 31, while x, = E ,  + ez ,  x2 = c2+ e,, x, = -xI 
and x4=-xz. The relevant automorphism of L is given by a = 2 + p = r 1 @ ~ - ~ 1  with 
r = 2+&. Note that ao= 1 + r is an automorphism of Lo but not of L. r permutes Li 
cyclically, while a permutes their order pairwisely into (L,, La,  L , ,  L2) .  r and a satisfy 
r z = a  and r 4 = a 2 = E .  

Another homopolar NE-type dodecagonal lattice obtained from the other class of 
SPS with point group 3m is similar to L because it is written as a,L. 

The deformed lattice with two mirrors of type A is characterized by the index 
K = [ p ,  2q,O, -q / -u ,  0,20, U], where p / q  and u/u are rational approximants to & 
(Niizeki 1992b). The relevant integers p’  and q’ in K’ ( = M K )  are given by p’=3q 
and q ’ = p ,  which satisfy p ’ + & q ’ = & ( p + 8 q ) .  U’ and U’ are given similarly. If p is 
not divided by 3, p’ lq’  is a simple fraction and = &. 8 has three series of best 
approximants and the numeratorpf every approximant in one of the three is divided 
by 3 (Niizeki 1992b). Therefore, Lo.E is a superlattice o f f , ,  if p / q  or u / u  belongs to 
this series. 

We show in figure 7 a square PA to the dodecagonal QL. The PA is designated by 
~4g(3/2,3/2). 

6. Summary and discussions 

The arguments made so far are summarized as follows: The mother lattice L of an 
NE-type QL has two associated Bravais lattices Lo and L,.  Of the two, Lo is of essential 
importance in the symmetry properties of L because it represents the translational part 
of the space group of L. There exists a one-to-one correspondence between PAS to the 
NB-type QL and to a Bravais-type QL obtained from Lo. so that the main problems on 
the former PAS are reduced to similar problems on the latter and the previous theories 
on the space groups and ‘self-similarity’ of the PAS apply essentially to the NE-type QL. 

Our theory includes a general prescription of obtaining PAS to an NE-type QL. These 
results are confirmed by applying the theory to several NB-type Q L ~  with octagonal, 
decagonal or dodecagonal point symmetry. 

We consider here the reason why f,, does not always represent the Bravais lattice 
of the relevant PA. i, is composed of m suhlattices which are translationally equivalent 
to io and f, is one of them. Using these %e can show easily the following proposition: 
A necessary and sufficien\condition for Lh,B and Lo,B to coincide is that all the lattice 
points of Lh,E belong to Lo. 

We have shown that the approximant lattice io is characterized by ( p l q ,  u f u), i.e. 
a pair of approximants to T (or a similar-irrational) and L, by ( p ’ / q ’ .  u’/u’). A best 
PA to the NE-type QL is obtained when L3 is a best approximant-to Lo because the 
Bravais lattice of the PA is determined by Lo. Note, however, that L, is not necessarily 
then a best approximant to L, .  
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We can derive from these arguments the following conclusion: It is not L, but Lo 
that dominates the properties of the PAS to the relevant QL although the h-scheme is 
used frequently in an argument on an Ns-type QL. One must not confuse the two lattices. 

The 40 n-gonal lattice has many classes of SPS (Niizeki 1989~) and we can constmct 
other kinds of NB-type QLS than those investigated in section 5. We shall discuss briefly 
two of them. First, a homopolar NB-type octagonal QL is derived from the Ammann 
octagonal tiling in figure 2 by putting lattice points onto all the centres of rhombic 
tiles (45O-rhomhi). The mother lattice of this QL is an NE-type 4~ octagonal lattice with 
Y = 4, m = 8, f = 2, p = 1 t r + r2 i r' and x, = si ( i  = 1-4). Second, a homopolar p - t y p e  
dodecagonal QL is derived from the dodecagonal tiling in section 5 by,putting lattice 
points onto all the centres of square tiles. This QL is identical to figure 3 in Nissen 
(1990). The mother lattice of this QL is an NB-type 4D dodecagon4 lattice (Niizeki 
1989a) with Y = 3, m =4, f = 2, p = 1 + r3 and xi = si ( i  = 1-4). Note that Lo and L, 
have an inverted relation for the two cases presented here. 

Minimal dimensionality of the mother lattice of the n-gonal QL with n = 8, 10 or 
12 is four and we have used 4~ n-gonal lattices to obtain the NB-type n-gonal ~ k .  

However, the Penrose QL (or the dodecagonal QL in section 5.3) is obtained, alterna- 
tively, from the SD (or 6 ~ )  simple hypercubic lattice as shown by de Bruijn (1981) (or 
by Niizeki 1988 and Socolar 1989), which is a Bravais lattice. An n-gonal QL is obtained 
even from the simple hypercubic lattice in n-dimensions (Gahler and Rhyner 1986, 
Whittaker and Whittaker 1988). The PAS to the Penrose QL have been investigated in 
this framework although the space groups of the PAS have not been fully investigated 
(Eintin-Wohlman et a/ 1988, Edagawa et a/ 1991). A QL obtained from a mother lattice 
with non-minimal dimensionality is always of rw-type in the definition of the present 
paper even though the mother lattice is a Bravais lattice. Therefore the PAS to the QL 

We can obtain many NB-type n-gonal QLS by the dual grid method (Niizeki 19899, 
Stampfli 1990). They are obtained by the projection method (Niizeki 1989b) as weil: 
so that their PAS are also treated by the formalism developed in this paper. 

are treated by the formalism developed in this paper. , ~ .:1. 
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Appendix 

The transformation matrix M for ( a )  the octagonal case, (b) the decagonal case and 
( c )  the dodecagonal case: 

( 0 )  ( b )  (C) 

0 1 0 - 1  0 0 - 1  1 0  0 1 0 - 1  

-1 0 1 -1 0 1 
0 - 1  1 0  0 
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